Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(4): e17257, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572701

RESUMEN

Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.


Los países están ampliando las redes de áreas marinas protegidas (AMP) para mitigar la disminución de las pesquerías y apoyar la biodiversidad marina. Sin embargo, las evaluaciones de impacto de las AMP típicamente estudian la biomasa total de peces. Aquí, examinamos cómo la biomasa de peces desagregada por etapas de vida adultas y juveniles responde a factores ambientales como anomalías de la temperatura superficial del mar (SST) e impacto humano, y múltiples tipos de manejo en 139 sitios de arrecifes en el sistema arrecifal mesoamericano (SAM). Encontramos que la biomasa total de peces en general parece estable en toda la región entre 2006 y 2018, con una recuperación limitada de las poblaciones de peces en las AMP. Sin embargo, la métrica de biomasa total de peces enmascaró los cambios en la estructura de la comunidad de peces, con una biomasa de peces adultos más baja que juveniles en los sitios del norte, y proporciones adulto:juvenil más cercana a 1:1 en los sitios del sur. Estos cambios fueron asociados con diferentes respuestas de peces juveniles y adultos a variables ambientales y de manejo. La biomasa de peces juveniles aumentó en sitios con alta conectividad larvaria y cobertura coralina, mientras que la biomasa de peces adultos disminuyó en sitios con mayor impacto humano y anomalías en la SST. La biomasa de peces adultos disminuyó principalmente en las zonas de uso general (GUZ) hondureñas, lo cual sugiere una protección insuficiente para peces adultos en el sur del SAM. Hubo un gradiente norte­sur en el manejo y los factores ambientales, con menor cobertura de áreas totalmente protegidas y mayores anomalías de SST y desarrollo costero en el sur. En conjunto esto puede degradar el mantenimiento de la biomasa de peces adultos en el sur del SAM. La interacción entre factores ambientales y el manejo en el diseño de las AMP es fundamental para aumentar la biomasa de peces en todas las etapas del ciclo de vida.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Arrecifes de Coral , Conservación de los Recursos Naturales , Biomasa , Peces/fisiología , Explotaciones Pesqueras
2.
PLoS One ; 17(1): e0249155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041688

RESUMEN

Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12-15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.


Asunto(s)
Antozoos , Animales
3.
Mar Pollut Bull ; 172: 112865, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34419696

RESUMEN

The Gulf of Honduras includes extensive coral reefs in Belize and Guatemala, classified into four biogeographic zones, which are differentially affected by runoff, hurricanes, and fishing. Runoff mostly impacts the coastal and adjacent channel reefs. The Belize Barrier Reef (BBR) experiences less runoff impact due to the prevailing cyclonic ocean circulation. Hurricane waves powerfully impact the BBR, only occasionally the lee-side of Glover's Reef, and rarely the coastal and channel reefs. Fishing pressure is most intense on the coastal and channel reefs, comparatively modest on the BBR, and low at Glover's Reef. The effects of the three local stressors were evaluated using observations from 24 sites in the Gulf of Honduras. Data were analyzed using the Reef Health Index (RHI), with the highest RHI (4.3) for two Glover's Reef sites, medium RHI (2.6) for 10 sites on the barrier reef, and lowest RHI (2.1) for 8 coastal reef sites.


Asunto(s)
Antozoos , Tormentas Ciclónicas , Animales , Belice , Arrecifes de Coral , Honduras
4.
Environ Sci Pollut Res Int ; 28(10): 11749-11797, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29124633

RESUMEN

New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).


Asunto(s)
Insecticidas , Animales , Abejas , Ecosistema , Insecticidas/análisis , Insecticidas/toxicidad , Invertebrados , Neonicotinoides , Nitrocompuestos , Polinización
5.
Adv Mar Biol ; 87(1): 331-360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293016

RESUMEN

Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Región del Caribe , Cambio Climático , Ecosistema , Algas Marinas
6.
Mar Pollut Bull ; 159: 111387, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32827871

RESUMEN

Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Región del Caribe , Ecosistema , Peces , Indias Occidentales
7.
Sci Rep ; 9(1): 11013, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358849

RESUMEN

Increasing heat stress due to global climate change is causing coral reef decline, and the Caribbean has been one of the most vulnerable regions. Here, we assessed three decades (1985-2017) of heat stress exposure in the wider Caribbean at ecoregional and local scales using remote sensing. We found a high spatial and temporal variability of heat stress, emphasizing an observed increase in heat exposure over time in most ecoregions, especially from 2003 identified as a temporal change point in heat stress. A spatiotemporal analysis classified the Caribbean into eight heat-stress regions offering a new regionalization scheme based on historical heat exposure patterns. The temporal analysis confirmed the years 1998, 2005, 2010-2011, 2015 and 2017 as severe and widespread Caribbean heat-stress events and recognized a change point in 2002-2004, after which heat exposure has been frequent in most subsequent years. Major heat-stress events may be associated with El Niño Southern Oscillation (ENSO), but we highlight the relevance of the long-term increase in heat exposure in most ecoregions and in all ENSO phases. This work produced a new baseline and regionalization of heat stress in the basin that will enhance conservation and planning efforts underway.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Animales , Antozoos/fisiología , Región del Caribe , Conservación de los Recursos Naturales , El Niño Oscilación del Sur , Monitoreo del Ambiente , Respuesta al Choque Térmico
8.
Science ; 363(6431): 1046-1048, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30846589
9.
PeerJ ; 4: e2084, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27280075

RESUMEN

Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005-2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.

10.
PLoS One ; 9(4): e96140, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24763319

RESUMEN

The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010-2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010-2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010-2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Animales , Región del Caribe
11.
PLoS One ; 4(7): e6324, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19623250

RESUMEN

Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.


Asunto(s)
Antozoos/fisiología , Estrés Fisiológico , Animales , Antozoos/crecimiento & desarrollo , Clima , Dinoflagelados , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...